Web Intelligence and Big Data

Gautam Shroff, Indian Institute of Technology Delhi

This course is about building 'web-intelligence' applications exploiting big data sources arising social media, mobile devices and sensors, using new big-data platforms based on the 'map-reduce' parallel programming paradigm. In the past, this course has been offered at the Indian Institute of Technology Delhi as well as the Indraprastha Institute of Information Technology Delhi.

The past decade has witnessed the successful of application of many AI techniques used at `web-scale’, on what are popularly referred to as big data platforms based on the map-reduce parallel computing paradigm and associated technologies such as distributed file systems, no-SQL databases and stream computing engines. Online advertising, machine translation, natural language understanding, sentiment mining, personalized medicine, and national security are some examples of such AI-based web-intelligence applications that are already in the public eye. Others, though less apparent, impact the operations of large enterprises from sales and marketing to manufacturing and supply chains. In this course we explore some such applications, the AI/statistical techniques that make them possible, along with parallel implementations using map-reduce and related platforms.

This course was offered thrice during Fall 2012, Spring 2012 and Fall 2013; in Fall of both years it was also taken for credit at IIT Delhi and IIIT Delhi. During this period, I also wrote a book to elucidate the ideas discussed in the course at a 'popular' level:

The Intelligent Web: Search, Smart Algorithms and Big Data published by Oxford University Press, UK, in November 2013.

Now in this edition, the course is being offered in 'self-study' mode.

Syllabus

Introduction and Overview  Look: Search, Indexing and Memory Listen: Streams, Information and Language, Analyzing Sentiment and Intent Load: Databases and their Evolution, Big data Technology and Trends
Programming: Map-Reduce Learn: Classification, Clustering, and Mining, Information Extraction Connect: Reasoning: Logic and its Limits, Dealing with Uncertainty
Programming: Bayesian Inference for Medical Diagnostics Predict: Forecasting, Neural Models, Deep Learning, and Research Topics
Data Analysis: Regression and Feature Selection

Recommended Background

Basic programming, SQL and data structures Exposure to probability, statistics and matrices

Course Format

The course consists of lecture videos, which are between 5 and 15 minutes in length, adding up to a maximum of 1-1.5 hrs per week. There are 1-2 integrated quiz questions per lecture video. Additional short quizzes will test basic understanding. However, the current edition of the course is being offered in 'self-study' mode, so there are no homeworks, assignments or exams. Nor is there active support by the instructor or TA, but discussion forums are available for peer-learning.

FAQ

  • Will I get a certificate after completing this class?

    No. In the past, statements of accomplishment were given. However,  the current edition of the course is being offered for 'self-study', without any graded homework or exams, and so no certificates.


  • Do I need any additional materials?

    Access to a computer on which Python 2.7 either is already installed or can be downloaded and installed. See http://www.python.org.

会期:
  • 2014年4月20日, 9 星期
  • 2013年8月26日, 12 星期
  • 2013年3月24日, 10 星期
  • 2012年8月27日, 10 星期
介绍:
  • 免费:
  • 收费:
  • 证书:
  • MOOC:
  • 视频讲座:
  • 音频讲座:
  • Email-课程:
  • 语言: 英语 Gb

反馈

目前这个课程还没有反馈。您想要留第一个反馈吗?

请注册, 为了写反馈

Show?id=n3eliycplgk&bids=695438
已经在列表:
Small-icon.hover Machine Learning
Machine learning: from the basics to advanced topics. Includes statistics...
NVIDIA
还有这个题目的:
Ll9ungbqpiwg1u5whyyb_q-co6gazjc-ft3xotas5dv3ubnz7xdz6b5t3jpl7aefmvey2gjvkkt7kzwveio=s0#w=1724&h=1060 Data Wrangling with MongoDB. Data Manipulation and Retrieval
Data Scientists spend most of their time cleaning data. In this course, you...
Big_data5 Big Data for Better Performance
Learn how you can predict customer demand and preferences by using the data...
162610_2b5d_3 Apache Hadoop Essential Training
Big Data, Machine Learning, DBMS, GFS, Map Reduce and Much More
135794_70fd_7 Analytics For All
Your practical application oriented guide to analyzing Big Data
102388_7f9d_9 Online Courses - Anytime, Anywhere
Learn Analytics from scratch- Ace Excel, cluster and factor analysis, linear...
还有标题«计算机科学»:
695ff980-b45a-425f-bee6-51bf6e962d90-de2d1a1c22e0.small Video Game Design History
Learn about the evolution of video games from experts at The Strong National...
595aa0b6-077d-439b-a651-95a9ee65c51a-fc966dc2648f.small Video Game Design and Balance
Learn about the video game design process and experiment with effective methods...
Fcd236ea-68ae-46f7-b991-849a41cebc64-0ea84acf6bad.small Video Game Asset Creation and Process
Learn about the tools, processes and platforms that allow video game assets...
Regular_7e290d30-8e84-46b2-bf50-801246fb157c Advanced Data Mining with Weka
Learn how to use popular packages that extend Weka's functionality and areas...
Regular_0b883f52-bc27-40f6-b633-d5fa9dd1101a Prepare to Run a Code Club
Build your confidence and get practical advice on launching and running a Code...
还有Coursera:
Success-from-the-start-2 First Year Teaching (Secondary Grades) - Success from the Start
Success with your students starts on Day 1. Learn from NTC's 25 years developing...
New-york-city-78181 Understanding 9/11: Why Did al Qai’da Attack America?
This course will explore the forces that led to the 9/11 attacks and the policies...
Small-icon.hover Aboriginal Worldviews and Education
This course will explore indigenous ways of knowing and how this knowledge can...
Ac-logo Analytic Combinatorics
Analytic Combinatorics teaches a calculus that enables precise quantitative...
Talk_bubble_fin2 Accountable Talk®: Conversation that Works
Designed for teachers and learners in every setting - in school and out, in...

© 2013-2019