课程列表: Machine Learning

Machine learning: from the basics to advanced topics.

Includes statistics topics, data mining and artificial intelligence as well as applications like natural language processing, recommender systems, robot control.

作者: Grigory Sapunov
课程
介绍
会期
1
Small-icon.hover
Small-icon.hover
Andrew Ng, Associate Professor
Stanford University
计算机科学 数学与统计
Gb Free
课程加成功了: 很早之前
Learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. Machine Learning is now available in Coursera’s on demand format! To watch videos and complete assignments at your own pace, join the on demand course now at: https:...
细节问题没有被通知
已经被X人收藏了 7 人
2
Machinelearninglogo
Machinelearninglogo
Pedro Domingos
University of Washington
计算机科学 数学与统计
Gb Free
课程加成功了: 很早之前
Why write programs when the computer can instead learn them from data? In this class you will learn how to make this happen, from the simplest machine learning algorithms to quite sophisticated ones. Enjoy! Machine learning algorithms can figure out how to perform important tasks by generalizing from...
细节问题没有被通知
已经被X人收藏了 5 人
3
Small-icon.hover
Small-icon.hover
Geoffrey Hinton
University of Toronto
计算机科学 数学与统计
Gb Free
课程加成功了: 很早之前
Learn about artificial neural networks and how they're being used for machine learning, as applied to speech and object recognition, image segmentation, modeling language and human motion, etc. We'll emphasize both the basic algorithms and the practical tricks needed to get them to work well. Neural...
2012年10月01日, 8 星期
已经被X人收藏了 10 人
4
Small-icon.hover
Small-icon.hover
Daphne Koller, Professor
Stanford University
计算机科学
Gb Free
课程加成功了: 很早之前
In this class, you will learn the basics of the PGM representation and how to construct them, using both human knowledge and machine learning techniques. What are Probabilistic Graphical Models? Uncertainty is unavoidable in real-world applications: we can almost never predict with certainty what will...
2013年4月08日, 11 星期
已经被X人收藏了 2 人
5
Dlphlmafw8ni4x7o98v2lyrnkdxsfjpeuuc-kulygbyhlymdwnpu490a8isnp6j_vh-y_skcx8n_nui1wm8=s0#w=436&h=268
Dlphlmafw8ni4x7o98v2lyrnkdxsfjpeuuc-kulygbyhlymdwnpu490a8isnp6j_vh-y_skcx8n_nui1wm8=s0#w=436&h=268
This course will introduce you to the basics of AI. Topics include machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing.
自由时间安排
已经被X人收藏了 1 人
6
Dtag60lui_xeuuedkzsip7-rp7g6slnwyhg9bbazg2ydp24mnc6r2tjzme5wnlljdi6ijqm-ycwo_gezug=s0#w=436&h=268
Dtag60lui_xeuuedkzsip7-rp7g6slnwyhg9bbazg2ydp24mnc6r2tjzme5wnlljdi6ijqm-ycwo_gezug=s0#w=436&h=268
Learn how to program all the major systems of a robotic car. Topics include planning, search, localization, tracking, and control.
自由时间安排
已经被X人收藏了 2 人
7
Movielens
Movielens
University of Minnesota
商务与管理 计算机科学 工程科学
Gb Paid Free
课程加成功了: 很早之前
This course introduces the concepts, applications, algorithms, programming, and design of recommender systems--software systems that recommend products or information, often based on extensive personalization. Learn how web merchants such as Amazon.com personalize product suggestions and how to apply...
细节问题没有被通知
已经被X人收藏了 5 人
8
Large-icon
Large-icon
Dan Jurafsky, Christopher Manning
Stanford University
计算机科学
Gb Free
课程加成功了: 很早之前
In this class, you will learn fundamental algorithms and mathematical models for processing natural language, and how these can be used to solve practical problems.
自由时间安排
已经被X人收藏了 6 人
9
Istock_000020359734_small
Istock_000020359734_small
Michael Collins
Columbia University
计算机科学
Gb Free
课程加成功了: 很早之前
Have you ever wondered how to build a system that automatically translates between languages? Or a system that can understand natural language instructions from a human? This class will cover the fundamentals of mathematical and computational models of language, and the application of these models to...
2013年2月24日, 10 星期
已经被X人收藏了 2 人
10
Small-icon.hover
Small-icon.hover
Gautam Shroff
Indian Institute of Technology Delhi
计算机科学
Gb Free
课程加成功了: 很早之前
This course is about building 'web-intelligence' applications exploiting big data sources arising social media, mobile devices and sensors, using new big-data platforms based on the 'map-reduce' parallel programming paradigm. In the past, this course has been offered at the Indian Institute of Technology...
2014年4月20日, 9 星期
已经被X人收藏了 4 人
11
Small-icon.hover
Small-icon.hover
Bill Howe
University of Washington
计算机科学 工程科学 数学与统计
Gb Free
课程加成功了: 很早之前
Join the data revolution. Companies are searching for data scientists. This specialized field demands multiple skills not easy to obtain through conventional curricula. Introduce yourself to the basics of data science and leave armed with practical experience extracting value from big data. #uwdatasci...
2014年6月30日, 8 星期
已经被X人收藏了 7 人
12
Caltech_data_262x136_0
Caltech_data_262x136_0
CaltechX
计算机科学
Gb Free
课程加成功了: 2013年9月15日
Introductory Machine Learning course covering theory, algorithms and applications. Our focus is on real understanding, not just "knowing." About this Course This is an introductory course in machine learning (ML) that covers the basic theory, algorithms, and applications. ML is a key technology in Big...
2014年9月25日, 10 星期
已经被X人收藏了 3 人
13
Logo
Logo
David MacKay
University of Cambridge
计算机科学 数学与统计
Gb Free
课程加成功了: 2013年9月26日
A series of sixteen lectures covering the core of the book "Information Theory, Inference, and Learning Algorithms (Cambridge University Press, 2003)" which can be bought at Amazon, and is available free online. A subset of these lectures used to constitute a Part III Physics course at the University...
自由时间安排
已经被X人收藏了 2 人
14
Uoft_logo
Uoft_logo
Geoffrey Hinton
University of Toronto
计算机科学 数学与统计
Gb Free
课程加成功了: 2013年9月26日
Introductory course in machine learning by world leading expert Geoffrey Hinton. Topics include: linear regression and classification, neural networks, clustering, decision trees, gaussian processes, deep belief nets and more
自由时间安排
已经被X人收藏了 1 人
15
Uoft_logo
Uoft_logo
Tijmen Tieleman, Geoffrey Hinton
University of Toronto
计算机科学 数学与统计
Gb Free
课程加成功了: 2013年9月26日
In this course, we study neural networks of various types. Topics include: neural network architectures, perceptrons, the backpropagation algorithm, neuro-probabilistic language models, convolutional nets for digit recognition, mini-batch gradient descent, the momentum method, recursive neural networks...
自由时间安排
已经被X人收藏了 3 人
16
Uoft_logo
Uoft_logo
Geoffrey Hinton
University of Toronto
计算机科学 数学与统计
Gb Free
课程加成功了: 2013年9月26日
Advanced course in machine learning by world leading expert Geoffrey Hinton. Topics include: graphical models, Restricted Boltzmann machines, Object Recognition in Deep Neural Nets, Recurrent neural networks, Non-linear Dimensionality Reduction and more.
自由时间安排
已经被X人收藏了 4 人
17
B-teaser-0
B-teaser-0
Константин Вячеславович Воронцов
Яндекс
计算机科学 数学与统计
Ru Free
课程加成功了: 很早之前
Лектор: Константин Вячеславович Воронцов, старший научный сотрудник Вычислительного центра РАН. Заместитель директора по науке ЗАО "Форексис". Заместитель заведующего кафедрой «Интеллектуальные системы» ФУПМ МФТИ. Доцент кафедры "Математические методы прогнозирования" ВМиК МГУ. Эксперт компании "Янд...
细节问题没有被通知
已经被X人收藏了 9 人
18
Cscenter
Cscenter
Буре Владимир Мансурович, Грауэр Лидия Вальтеровна
Computer Science Center
数学与统计
Ru Free
课程加成功了: 很早之前
Лекция 0 «Обзор основных фактов теории вероятностей» Лекция 1 Выборка, эмпирическая вероятностная мера, теорема Гливенко-Кантелли. Описательная статистика. Лекция 2 Статистики 1-го типа, точечные оценки, свойства точечных оценок, методы построения точечных оценок, неравенство Рао-Крамера. ...
自由时间安排
已经被X人收藏了 9 人
19
9-520s06
9-520s06
Prof. Tomaso Poggio
MIT OpenCourseWare
生物学和生命科学
Gb Free
课程加成功了: 很早之前
This course is for upper-level graduate students who are planning careers in computational neuroscience. This course focuses on the problem of supervised learning from the perspective of modern statistical learning theory starting with the theory of multivariate function approximation from sparse data...
自由时间安排
20
6-867f06
6-867f06
Rohit Singh(Teaching Assistant)
MIT OpenCourseWare
计算机科学
Gb Free
课程加成功了: 很早之前
6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov...
自由时间安排

© 2013-2019